How Active is Active Learning: Value Function Method Versus an Approximation Method
نویسندگان
چکیده
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملActive Learning for Function Approximation
We develop a principled strategy to sample a function optimally for function approximation tasks within a Bayesian framework. Using ideas from optimal experiment design, we introduce an objective function (incorporating both bias and variance) to measure the degree of approximation, and the potential utility of the data points towards optimizing this objective. We show how the general strategy ...
متن کاملActive Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning
Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares policy iteration (LSPI) framework allows us to employ statistical active learning methods for linear regression. Then we propose a design method of good sampling policies for efficient exploration, which is particularl...
متن کاملExtended Active Learning Method
Active Learning Method (ALM) is a soft computing method which is used for modeling and control, based on fuzzy logic. Although ALM has shown that it acts well in dynamic environments, its operators cannot support it very well in complex situations due to losing data. Thus ALM can find better membership functions if more appropriate operators be chosen for it. This paper substituted two new oper...
متن کاملEfficient exploration through active learning for value function approximation in reinforcement learning
Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares policy iteration (LSPI) framework allows us to employ statistical active learning methods for linear regression. Then we propose a design method of good sampling policies for efficient exploration, which is particularl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Economics
سال: 2020
ISSN: 0927-7099,1572-9974
DOI: 10.1007/s10614-020-09968-2